Article ID Journal Published Year Pages File Type
6358745 Marine Pollution Bulletin 2014 12 Pages PDF
Abstract
The droplet size distribution of dispersed phase (oil and/or gas) in submerged buoyant jets was addressed in this work using a numerical model, VDROP-J. A brief literature review on jets and plumes allows the development of average equations for the change of jet velocity, dilution, and mixing energy as function of distance from the orifice. The model VDROP-J was then calibrated to jets emanating from orifices ranging in diameter, D, from 0.5 mm to 0.12 m, and in cross-section average jet velocity at the orifice ranging from 1.5 m/s to 27 m/s. The d50/D obtained from the model (where d50 is the volume median diameter of droplets) correlated very well with data, with an R2 = 0.99. Finally, the VDROP-J model was used to predict the droplet size distribution from Deepwater Horizon blowouts. The droplet size distribution from the blowout is of great importance to the fate and transport of the spilled oil in marine environment.
Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Oceanography
Authors
, , , , , ,