Article ID Journal Published Year Pages File Type
6368009 Water Research 2011 9 Pages PDF
Abstract
Due to the high energy input of aeration, the spatial distribution of air diffusers largely determines the flow field in aeration tanks. This has consequences on the efficiency of the aeration system, the performance of the aeration tank and on tank operation and control. This paper deals with these effects applying both Computational Fluid Dynamics (CFD) enhanced with a biokinetic model and full scale validation using velocity and reactive tracer measurements with high temporal and spatial resolution. It is shown that small changes in the diffuser arrangement drastically change the overall flow field. Using different aeration patterns in the same tank may lead to large scale instabilities in the flow field that lower plant performance and produce strong variations in concentration signals impeding their use for plant control. CFD is a valuable tool to analyze the interaction of flow field and aeration and their effects on plant performance and operation. But, in complex flow situations experimental validation is needed and strongly suggested.
Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Earth-Surface Processes
Authors
, , , ,