Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
6368181 | Water Research | 2010 | 12 Pages |
Abstract
Aerobic methanotrophs can contribute to nitrate removal from contaminated waters, wastewaters, or landfill leachate by assimilatory reduction and by producing soluble organics that can be utilized by coexisting denitrifiers. The goal of this study was to investigate nitrate removal and biofilm characteristics in membrane biofilm reactors (MBfR) with various supply regimes of oxygen and methane gas. Three MBfR configurations were developed and they achieved significantly higher nitrate removal efficiencies in terms of methane utilization (values ranging from 0.25 to 0.36 mol N molâ1 CH4) than have previously been observed with suspended cultures. The biofilm characteristics were investigated in two MBfRs with varying modes of oxygen supply. The biofilms differed in structure, but both were dominated by Type I methanotrophs growing close to the membrane surface. Detection of the nitrite reductase genes, nirS and nirK, suggested genetic potential for denitrification was present in the mixed culture biofilms.
Related Topics
Physical Sciences and Engineering
Earth and Planetary Sciences
Earth-Surface Processes
Authors
Oskar Modin, Kensuke Fukushi, Fumiyuki Nakajima, Kazuo Yamamoto,