Article ID Journal Published Year Pages File Type
636923 Journal of Membrane Science 2009 6 Pages PDF
Abstract

Amphiphilic graft copolymers comprising poly(vinyl chloride) (PVC) main chains and poly(oxyethylene methacrylate) (POEM) side chains, i.e. PVC-g-POEM, were synthesized via atom transfer radical polymerization (ATRP) using direct initiation of the secondary chlorines of PVC. Successful synthesis of the graft copolymer was confirmed using 1H NMR and FT-IR spectroscopy. TEM and DSC analysis revealed the well-defined microphase-separated structure of the graft copolymer into hydrophobic PVC and hydrophilic POEM domains. All the membranes exhibited amorphous structures and the intersegmental d-spacing were increased with the grafting degree, as characterized by XRD analysis. Permeation experimental results using a CO2/N2 (50/50) mixture indicated that as an amount of POEM in a copolymer increased, CO2 permeability increased dramatically without the sacrifice of selectivity. For example, the CO2 permeability [1 × 10−8 cm3(STP) cm/cm2 s cmHg (100 Barrer)] of PVC-g-POEM with 70 wt% of POEM at 25 °C was about 70 times higher than that of the pure PVC membrane [1.45 × 10−10 cm3(STP) cm/cm2 s cmHg (1.45 Barrer)].

Related Topics
Physical Sciences and Engineering Chemical Engineering Filtration and Separation
Authors
, , , , ,