Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
637637 | Journal of Membrane Science | 2008 | 4 Pages |
Poly(amidoamine) (PAMAM) dendrimers showed high CO2 separation properties and were successfully immobilized in a poly(ethylene glycol) (PEG) network upon photopolymerization of PEG dimethacrylate. The PAMAM dendrimer incorporation ratio was readily controlled, and a stable self-standing membrane containing up to 75 wt.% PAMAM dendrimer was obtained. The CO2 separation properties over smaller H2 were investigated by changing the PAMAM dendrimer content or generation and CO2 partial pressure (ΔPCO2ΔPCO2) under atmospheric conditions. Especially, a polymeric membrane containing 50 wt.% PAMAM dendrimer (0th generation) exhibited an excellent CO2/H2 selectivity of 500 with CO2 permeability of 2.74 × 10−14 m3(STP)m/(m2 s Pa) or 3.65 × 103 barrer (1 barrer = 7.5 × 10−18 m3(STP)m/(m2 s Pa)) when a mixture gas (CO2/H2: 5/95 by vol.) was fed at 25 °C and 100 kPa with 80% relative humidity. This polymeric materials are promising for a novel CO2 separation membrane.