Article ID Journal Published Year Pages File Type
6380905 Advances in Water Resources 2015 26 Pages PDF
Abstract
In this study, we present a particle batch smoother (PBS) to determine soil moisture profiles by assimilating soil temperatures at two depths (4 and 8 cm). The PBS can be considered as an extension of the standard particle filter (PF) in which soil moisture is updated within a window of fixed length using all observed soil temperatures in that window. This approach was developed with a view to assimilating temperature observations from distributed temperature sensing (DTS) observations, a technique which can provide temperature observations every meter or less along cables up to kilometers in length. Here, the PBS approach is tested using soil moisture and temperature, and meteorological data from an experimental site in Citra, Florida. Results demonstrate that the PBS provides a statistically significant improvement in estimated soil moisture compared to the PF, with only a marginal increase in computational expense ( < 3% of CPU time). This confirms that assimilating a sequence of temperature observations yields a better soil moisture estimate compared to sequential assimilation of individual temperature observations. The impact of observation interval was investigated for both PF and PBS, and the optimal window length was determined for the PBS. While increasing the observation interval is essential to maintain the spread of particle values in the PF, the PBS performance is best when all available observations are assimilated.
Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Earth-Surface Processes
Authors
, , , ,