Article ID Journal Published Year Pages File Type
6380907 Advances in Water Resources 2015 11 Pages PDF
Abstract
The knowledge of subsurface heterogeneity is a prerequisite to describe flow and transport in porous media. Of particular interest are the variance and the correlation scale of hydraulic conductivity. In this study, we present how these aquifer parameters can be inferred using empirical steady state pumping test data. We refer to a previously developed analytical solution of “effective well flow” and examine its applicability to pumping test data as under field conditions. It is examined how the accuracy and confidence of parameter estimates of variance and correlation length depend on the number and location of head measurements. Simulations of steady state pumping tests in a confined virtual aquifer are used to systematically reduce sampling size while determining the rating of the estimates at each level of data density. The method was then applied to estimate the statistical parameters of a fluvial heterogeneous aquifer at the test site Horkheimer Insel, Germany. We conclude that the “effective well flow” solution is a simple alternative to laboratory investigations to estimate the statistical heterogeneity parameter using steady state pumping tests. However, the accuracy and uncertainty of the estimates depend on the design of the field study. In this regard, our results can help to improve the conceptual design of pumping tests with regard to the parameter of interest.
Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Earth-Surface Processes
Authors
, , , ,