Article ID Journal Published Year Pages File Type
638118 Journal of Membrane Science 2008 7 Pages PDF
Abstract

Thin-film composite (TFC) nanofiltration (NF) membrane was prepared through the interfacial polymerization between piperazine (PIP) and trimesoyl chloride (TMC) on the polysulphone support membrane. The chemical structure of membrane surface was studied by attenuated total reflectance infrared (ATR-IR) and X-ray photoelectronic spectroscopy (XPS). Parametric studies were conducted by varying reaction time, curing temperature, curing time and additives in PIP solution for obtaining the optimum polymerization conditions. Systematic performance studies were conducted with different feed solutions, feed concentrations, feed pHs, operating temperatures and pressures. Continuous and comparative tests were also conducted to determine the performance stability and separation efficiency of the thin-film composite NF membrane prepared. High performance thin-film composite NF membrane for the selective sulfate removal from concentrated sodium chloride aqueous with the water permeability coefficient of 75 L/(m2 h MPa) could be prepared under specific conditions. Experimental results on concentrated mixed solution of NaCl and Na2SO4 demonstrated that the NF membrane developed could be successfully used for the removal of sodium sulfate from the concentrated brine of chloralkali industry with high permeate flux, selectivity and performance stability.

Related Topics
Physical Sciences and Engineering Chemical Engineering Filtration and Separation
Authors
, , , ,