Article ID Journal Published Year Pages File Type
6381221 Advances in Water Resources 2013 19 Pages PDF
Abstract

This study contributes a rigorous diagnostic assessment of state-of-the-art multiobjective evolutionary algorithms (MOEAs) and highlights key advances that the water resources field can exploit to better discover the critical tradeoffs constraining our systems. This study provides the most comprehensive diagnostic assessment of MOEAs for water resources to date, exploiting more than 100,000 MOEA runs and trillions of design evaluations. The diagnostic assessment measures the effectiveness, efficiency, reliability, and controllability of ten benchmark MOEAs for a representative suite of water resources applications addressing rainfall-runoff calibration, long-term groundwater monitoring (LTM), and risk-based water supply portfolio planning. The suite of problems encompasses a range of challenging problem properties including (1) many-objective formulations with four or more objectives, (2) multi-modality (or false optima), (3) nonlinearity, (4) discreteness, (5) severe constraints, (6) stochastic objectives, and (7) non-separability (also called epistasis). The applications are representative of the dominant problem classes that have shaped the history of MOEAs in water resources and that will be dominant foci in the future. Recommendations are given for the new algorithms that should serve as the benchmarks for innovations in the water resources literature. The future of MOEAs in water resources needs to emphasize self-adaptive search, new technologies for visualizing tradeoffs, and the next generation of computing technologies.

► Evaluation of multi-objective evolutionary algorithms for water resources. ► Contributes a new comprehensive diagnostic framework for MOEA evaluation. ► Provides a vision for important new areas for future research advances. ► Results for challenging calibration, monitoring, and water management applications. ► Borg is introduced as a new benchmark MOEA for water resources applications.

Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Earth-Surface Processes
Authors
, , , , ,