Article ID Journal Published Year Pages File Type
6384639 Estuarine, Coastal and Shelf Science 2015 9 Pages PDF
Abstract
Shallow Posidonia oceanica beds (0 to −15 m), the most common seagrass in the Mediterranean, were mapped from aerial photographs dating from the 1920's and from 2012 along 800 km of coastline in South-Eastern France (Provence-Alpes-Côte-d'Azur region). Changes in P. oceanica bed spatial distribution (limits and extent) during these 85 years were analyzed in terms of concordance (remaining areas), positive discordance (expanding areas) or negative discordance (lost areas). Lost areas were linked with direct or indirect impacts of coastal development (artificialized coastlines (namely harbours, ports of refuge, landfills, artificial beaches, groynes and pontoons, submarine pipelines and aquatic farms) visible on the photographs. The comparison showed that 73% of the shallow limits have declined. Considering spatial extent, remaining seagrass meadows areas accounted for the major part (85%), while lost areas accounted for 13% and expanding areas for 1.1%. Lost areas were mainly linked with artificial coastlines but 44% remained with undetermined causes (invisible pressures and/or mixed effects). The analysis of 96 coastal facilities creating the artificial (namely man-made) coastlines showed that the highest impact over the longest distance (5 km) was caused by harbours. Only artificial beaches had such a distant impact. Pontoons were the least surrounded by lost seagrass meadows areas. These quantitative data offer important information for marine conservation.
Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Geology
Authors
, , , , ,