Article ID Journal Published Year Pages File Type
6388284 Ocean Modelling 2014 15 Pages PDF
Abstract
We then assess the TCs oceanic temperature signature in two global eddy-permitting ocean reanalyses (GLORYS1 and GLORYS2) forced by the above atmospheric products. The resulting cold wake is on average underestimated by ∼50% in the two oceanic reanalyses. This bias is largely linked to the underestimated TCs strength in the surface forcing, and the resulting underestimated vertical mixing. The overestimated TC radius also tends to overemphasize the Ekman pumping response to the cyclone. Underestimating vertical mixing without underestimating Ekman pumping results in the absence of the observed subsurface warming away from the TC tracks in the two reanalyses. Data assimilation only marginally contributes to reducing these errors, partly because cyclone signatures are not well resolved by the ocean observing system. Based on these results, we propose some assimilation and forcing strategies in order to improve the restitution of TC signatures in oceanic reanalyses.
Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Atmospheric Science
Authors
, , , , , , ,