Article ID Journal Published Year Pages File Type
64017 Journal of Energy Chemistry 2013 9 Pages PDF
Abstract

Multiwall carbon nanotubes (MWNTs) and alumina are combined to give a new type of nanohybrid for Fisher-Tropsch synthesis (FTS) catalyst support. Alumina nano-particles (10 wt%) were introduced directly on functionalized MWNTs by a modified sol-gel method. Microstructure observations show that alumina particles were homogeneously dispersed on the inside and outside of modified MWNTs surfaces. 15 wt% cobalt loading catalysts were prepared with this nanohybrid and γ-alumina as a reference, using a sol-gel technique and wet impregnation method respectively. These catalysts were characterized by TEM, XRD, N2-adsorption, H2 chemisorption and TPR. The deposition of cobalt nanoparticles synthesized by sol-gel technique on the MWNTs nanohybrid shift the reduction peaks to a low temperature, indicating higher reducibility for uniform cobalt particles. Nanohybrid also aided in high dispersion of metal clusters and high stability and performance of catalyst. The proposed MWNTs nanohybrid-supported cobalt catalysts showed the improved FTS rate (gHC/(gcat·min)), CO conversion (%), and water gas shift rate (WGS)(gCO2/(gcat·h)) of 0.012, 52, and 30E-3, respectively, as compared to those of 0.007, 25, and 18E-3, respectively, on the γ-alumina-supported cobalt catalysts with the same Co loading.

Graphical abstractThis paper describes our investigation about the effect of γ-alumina and multiwall carbon nanotubes/alumina nanohybrid-supported cobalt catalysts (AIW and CNH) on activity and product selectivity of Fischer-Tropsch synthesis.Figure optionsDownload full-size imageDownload as PowerPoint slide

Related Topics
Physical Sciences and Engineering Chemical Engineering Catalysis
Authors
, , ,