Article ID Journal Published Year Pages File Type
6409372 Journal of Hydrology 2016 10 Pages PDF
Abstract

•Space-time rainfall organization at and around debris flow locations is examined.•Rainfall exhibits a local peak at or around the debris flow locations.•Rainfall spatial decay depends on the duration of the rainfall event.•These space-time features explain the bias in the identified rainfall thresholds.

SummaryDebris flow occurrence is generally forecasted by means of empirical rainfall depth-duration thresholds based on raingauge observations. Rainfall estimation errors related to the sparse nature of raingauge data are enhanced in case of convective rainfall events characterized by limited spatial extent. Such errors have been shown to cause underestimation of the rainfall thresholds and, thus, less efficient forecasts of debris flows occurrence. This work examines the spatial organization of debris flows-triggering rainfall around the debris flow initiation points using high-resolution, carefully corrected radar data for a set of short duration (<30 h) storm events occurred in the eastern Italian Alps.On average, triggering rainfall presents a local peak corresponding to the debris flow initiation point, with rain depth at 5 km (10 km) distance being on average around 70% (40%) of rain depth observed at the debris flow initiation points. The peak is consistently enhanced for events characterized by short durations and causes a systematic underestimation of the rainfall depth-duration thresholds when rainfall is measured away from the debris flow initiation points.We develop an analytical framework that exploits the general characteristics of the spatial rainfall organization to predict the systematic underestimation of the depth-duration thresholds when rainfall is sampled away from the initiation points. Predictions obtained based on this analytical framework are assessed using a Monte Carlo sampling technique.

Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Earth-Surface Processes
Authors
, , , ,