Article ID Journal Published Year Pages File Type
6411723 Journal of Hydrology 2015 13 Pages PDF
Abstract

•There is a significant effect of the fire in runoff and erosion ratios.•Different burn severity does not evidence significant differences in post-fire runoff.•Different burn severity classification evidences significant differences in post-fire erosion.•Uniform burn severity classification worldwide is needed.•Guidelines for future studies are provided.

SummarySoil burn severity has been widely used to describe the impacts of fire on soils and is increasingly being recognised as a decisive factor controlling post-fire erosion rates. However, there is no unique definition of the term and the relationship between soil burn severity and post-fire hydrological and erosion response has not yet been fully established.The objective of this work was to review the existing literature on the role of soil burn severity on post-fire runoff and erosion ratios. To this end, a meta-analysis was carried out of the runoff and inter-rill erosion data from field rainfall simulation experiments (RSE's) that compared burnt and unburnt conditions. In this study, 109 individual observations were analysed that covered a wide geographical range, various types of land cover (forest, shrubland, and grassland) and two types of fire types (wildfire and prescribed fire). The effect size of the post-fire runoff and erosion response was determined for four key factors: (i) soil burn severity; (ii) time-since-fire; (iii) rainfall intensity; and (iv) bare soil cover.Statistical meta-analysis showed that fire occurrence had a significant effect on the hydrological and erosive response. However, this effect was only significantly higher with increasing soil burn severity for inter-rill erosion, and not for runoff. This study furthermore highlighted the incoherencies between existing burn severity classifications, and proposed an unambiguous classification.

Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Earth-Surface Processes
Authors
, , , ,