Article ID Journal Published Year Pages File Type
6412243 Journal of Hydrology 2014 16 Pages PDF
Abstract

•We apply Bayesian inference to water quality predictions of a distributed model.•Source attributions from various landuses generally could not be resolved.•A calibration approach focused on extreme events was compared to a standard one.•Bayesian model averaging resolves some disagreement between calibration frameworks.•A third of the water quality uncertainty stemmed from the discharge submodel.

SummarySpatially distributed nonpoint source watershed models are essential tools to estimate the magnitude and sources of diffuse pollution. However, little work has been undertaken to understand the sources and ramifications of the uncertainty involved in their use. In this study we conduct the first Bayesian uncertainty analysis of the water quality components of the SWAT model, one of the most commonly used distributed nonpoint source models. Working in Southern Ontario, we apply three Bayesian configurations for calibrating SWAT to Redhill Creek, an urban catchment, and Grindstone Creek, an agricultural one. We answer four interrelated questions: can SWAT determine suspended sediment sources with confidence when end of basin data is used for calibration? How does uncertainty propagate from the discharge submodel to the suspended sediment submodels? Do the estimated sediment sources vary when different calibration approaches are used? Can we combine the knowledge gained from different calibration approaches? We show that: (i) despite reasonable fit at the basin outlet, the simulated sediment sources are subject to uncertainty sufficient to undermine the typical approach of reliance on a single, best fit simulation; (ii) more than a third of the uncertainty of sediment load predictions may stem from the discharge submodel; (iii) estimated sediment sources do vary significantly across the three statistical configurations of model calibration despite end-of-basin predictions being virtually identical; and (iv) Bayesian model averaging is an approach that can synthesize predictions when a number of adequate distributed models make divergent source apportionments. We conclude with recommendations for future research to reduce the uncertainty encountered when using distributed nonpoint source models for source apportionment.

Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Earth-Surface Processes
Authors
, , , ,