Article ID Journal Published Year Pages File Type
6413698 Journal of Hydrology 2013 11 Pages PDF
Abstract

•A Lorenz curve is an effective way of assessing rainfall distribution.•Two indexes of Gini coefficient and Lorenz asymmetry coefficient from Lorenz Curve were defined.•A study of the rainfall concentration in the Lancang River has been carried out.•Significant trends were found in precipitation concentration index.•This work sheds new light on changing properties of rainfall in both time and space.

SummaryThe Lorenz Curve, a concept used in economic theory, is used to quantify spatial-temporal variability in the daily time series of precipitation concentrations. The Lorenz Curve provides a graphical view of the cumulative percentage of total yearly precipitation. In addition, further extraction of the data using the Gini coefficient and Lorenz asymmetry coefficient provides a two-parameter measure of precipitation concentration and an explanation of the basis for the underlying inequalities in precipitation distribution. Based on the calculation of the precipitation concentration index (CI) and the Lorenz asymmetry coefficient (S) values from 1960 to 2010, variations in the trends and periodic temporal-spatial patterns of precipitation at 31 stations across the Lancang River basin are discussed. The results are as follows: (1) highest precipitation CI values occurred in the southern Lancang River basin, whereas the lowest precipitation CI values were mainly observed in the upper reaches of the Lancang River basin, which features a more homogeneous temporal distribution of rainfall. S values throughout the entire basin were less than one, indicating that minor precipitation events have the highest contribution to overall precipitation inequality. (2) Application of the Mann-Kendall test revealed that a significant, decreasing trend in precipitation CI that exceeding the 95th percentile was detected in the upper and middle reaches of the Lancang River basin. However, there was only one significant (0.05) S value trend throughout the river. (3) Climate jumps in annual CI occurred during the early 1960s, 1970s and 1980s at Jinghong, Deqin and Zaduo stations, respectively. (4) Dominant periodic variations in precipitation CI, with periods of 4-17 years, were found. These results allow for an improved understanding of extreme climate events and improved river basin water resource management.

Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Earth-Surface Processes
Authors
, , , , ,