Article ID Journal Published Year Pages File Type
6414615 Journal of Algebra 2014 22 Pages PDF
Abstract

Motivated by the work of Chudnovsky and the Eisenbud-Mazur Conjecture on evolutions, Harbourne and Huneke give a series of conjectures that relate symbolic and regular powers of ideals of fat points in projective space Pn. The conjectures involve both containment statements and bounds for the initial degree in which there is a non-zero form in an ideal. Working with initial degrees, we verify two of these conjectures for special line count configurations in projective 2-space over an algebraically closed field of characteristic 0.

Related Topics
Physical Sciences and Engineering Mathematics Algebra and Number Theory
Authors
, ,