Article ID Journal Published Year Pages File Type
6414959 Journal of Algebra 2011 36 Pages PDF
Abstract

We prove several structural results on definable, definably compact groups G in o-minimal expansions of real closed fields such as (i) G is definably an almost direct product of a semisimple group and a commutative group, (ii) (G,⋅) is elementarily equivalent to (G/G00,⋅). We also prove results on the internality of finite covers of G in an o-minimal environment, as well as deducing the full compact domination conjecture for definably compact groups from the semisimple and commutative cases which were already settled.These results depend on key theorems about the interpretability of central and finite extensions of definable groups, in the o-minimal context. These methods and others also yield interpretability results for universal covers of arbitrary definable real Lie groups.

Related Topics
Physical Sciences and Engineering Mathematics Algebra and Number Theory
Authors
, , ,