Article ID Journal Published Year Pages File Type
6415269 Journal of Functional Analysis 2009 45 Pages PDF
Abstract

In this article we prove new results concerning the existence and various properties of an evolution system UA+B(t,s)0⩽s⩽t⩽T generated by the sum −(A(t)+B(t)) of two linear, time-dependent and generally unbounded operators defined on time-dependent domains in a complex and separable Banach space B. In particular, writing L(B) for the algebra of all linear bounded operators on B, we can express UA+B(t,s)0⩽s⩽t⩽T as the strong limit in L(B) of a product of the holomorphic contraction semigroups generated by −A(t) and −B(t), respectively, thereby proving a product formula of the Trotter-Kato type under very general conditions which allow the domain D(A(t)+B(t)) to evolve with time provided there exists a fixed set D⊂⋂t∈[0,T]D(A(t)+B(t)) everywhere dense in B. We obtain a special case of our formula when B(t)=0, which, in effect, allows us to reconstruct UA(t,s)0⩽s⩽t⩽T very simply in terms of the semigroup generated by −A(t). We then illustrate our results by considering various examples of nonautonomous parabolic initial-boundary value problems, including one related to the theory of time-dependent singular perturbations of self-adjoint operators. We finally mention what we think remains an open problem for the corresponding equations of Schrödinger type in quantum mechanics.

Related Topics
Physical Sciences and Engineering Mathematics Algebra and Number Theory
Authors
, , ,