Article ID Journal Published Year Pages File Type
6416624 Linear Algebra and its Applications 2013 19 Pages PDF
Abstract

The partial order on monomials that corresponds to domination when evaluated at positive Newton sequences is fully understood. Here we take up the corresponding partial order on linear combinations of monomials. In part using analysis based upon the cone structure of the exponents in p-Newton sequences, an array of conditions is given for this new partial order. It appears that a characterization in general will be difficult. Within the case in which all coefficients are 1, the situation in which, for general sequence length, there are two monomials, each of length two and nonnegative integer exponents, the partial order is fully characterized. The characterization is combinatorial, in terms of indices in the monomials, and, already here there is much more than term-wise domination.

Related Topics
Physical Sciences and Engineering Mathematics Algebra and Number Theory
Authors
, , ,