Article ID Journal Published Year Pages File Type
6416627 Linear Algebra and its Applications 2013 13 Pages PDF
Abstract

In this paper, we present a convergence analysis of the inexact Newton method for solving Discrete-time algebraic Riccati equations (DAREs) for large and sparse systems. The inexact Newton method requires, at each iteration, the solution of a symmetric Stein matrix equation. These linear matrix equations are solved approximatively by the alternating directions implicit (ADI) or Smithʼs methods. We give some new matrix identities that will allow us to derive new theoretical convergence results for the obtained inexact Newton sequences. We show that under some necessary conditions the approximate solutions satisfy some desired properties such as the d-stability. The theoretical results developed in this paper are an extension to the discrete case of the analysis performed by Feitzinger et al. (2009) [8] for the continuous-time algebraic Riccati equations. In the last section, we give some numerical experiments.

Related Topics
Physical Sciences and Engineering Mathematics Algebra and Number Theory
Authors
, ,