Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
6417646 | Journal of Mathematical Analysis and Applications | 2016 | 13 Pages |
Abstract
In this paper, we establish the following two Alzer's type inequalities under non-periodic end conditions, which are discrete analogues of Wirtinger's inequality: Let Z={z1,z2,â¯,zn}(nâ¥2) be one complex n-tuple with âk=1nzk=0, âZâ=âk=1n|zk|2, âÎZâ=âk=1nâ1|zk+1âzk|2, minâ¡|ÎZ|=minâ¡{|z2âz1|,|z3âz2|,â¯,|znâznâ1|}. ThenâÎZââ¥Î±(n)â max1â¤kâ¤nâ¡|zk|,âZââ¥Î²(n)â minâ¡|ÎZ|, where α(n)=6n(nâ1)(2nâ1) and β(n)=1nân24â. The constants α(n) and β(n) are best possible.
Keywords
Related Topics
Physical Sciences and Engineering
Mathematics
Analysis
Authors
Tuo Leng,