Article ID Journal Published Year Pages File Type
6417717 Journal of Mathematical Analysis and Applications 2015 14 Pages PDF
Abstract

It is shown how delta shock waves which consist of Dirac delta distributions and classical shocks can be used to construct non-monotone solutions of the Buckley-Leverett equation. These solutions are interpreted using a recent variational definition of delta shock waves in which the Rankine-Hugoniot deficit is explicitly accounted for [6]. The delta shock waves are also limits of approximate solutions constructed using a recent extension of the weak asymptotic method to complex-valued approximations [15]. Finally, it is shown how these non-standard shocks can be fitted together to construct similarity and traveling-wave solutions which are non-monotone, but still admissible in the sense that characteristics either enter or are parallel to the shock trajectories.

Related Topics
Physical Sciences and Engineering Mathematics Analysis
Authors
, , ,