Article ID Journal Published Year Pages File Type
6418565 Journal of Mathematical Analysis and Applications 2014 25 Pages PDF
Abstract

We consider the persistence of a transversal homoclinic solution and chaotic motion for ordinary differential equations with a homoclinic solution to a hyperbolic equilibrium under an unbounded random forcing driven by a Brownian force. By Lyapunov-Schmidt reduction, the persistence of transversal homoclinic solution is reduced to find the zeros of some bifurcation functions defined between two finite spaces. It is shown that, for almost all sample paths of the Brownian motion, the perturbed system exhibits chaos.

Related Topics
Physical Sciences and Engineering Mathematics Analysis
Authors
, , ,