Article ID Journal Published Year Pages File Type
6418898 Journal of Mathematical Analysis and Applications 2013 15 Pages PDF
Abstract

An attractive feature of discontinuous Galerkin (DG) finite element schemes is that this concept offers a unified and versatile discretization platform for various types of partial differential equations. The locality of the trial functions not only supports local mesh refinements but also offers a framework for comfortably varying the order of the discretization. In this paper, we propose and analyze a mixed-DG finite element method for a displacement-pressure model which describes swelling dynamics of polymer gels under mechanical constraints. By introducing a flux variable we first present a reformulation of the governing equations of polymer gels. We then approximate the pressure and flux variables by a mixed finite element space and the displacement by DG finite element method. Existence and uniqueness are proved and error estimates are derived for mixed-DG finite element scheme. Finally, numerical experiments are presented to show the performance of the mixed-DG approximation of polymer gels.

Related Topics
Physical Sciences and Engineering Mathematics Analysis
Authors
, ,