Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
6419186 | Journal of Mathematical Analysis and Applications | 2013 | 13 Pages |
Abstract
We derive sufficient conditions ensuring the existence of a weak solution u for fractional Euler-Lagrange equations of the type: (ELα)âLâx(u,Dâαu,t)+D+α(âLây(u,Dâαu,t))=0, on a real interval [a,b] and where Dâα and D+α are the fractional derivatives of Riemann-Liouville of order 0<α<1.
Keywords
Related Topics
Physical Sciences and Engineering
Mathematics
Analysis
Authors
Loïc Bourdin,