Article ID Journal Published Year Pages File Type
6419282 Journal of Mathematical Analysis and Applications 2012 12 Pages PDF
Abstract

The aim of this paper is to study the structural stability of solutions to the Riemann problem for a scalar conservation law with a linear flux function involving discontinuous coefficients. It is proved that the Riemann solution is possibly instable when one of the Riemann initial data is at the vacuum. Furthermore, we point out that the Riemann solution is also possibly instable even when the Riemann initial data stay far away from vacuum. In order to deal with it, we perturb the Riemann initial data by taking three piecewise constant states and then the global structures and large time asymptotic behaviors of the solutions are obtained constructively. It is also proved that the Riemann solutions are unstable in some certain situations under the local small perturbations of the Riemann initial data by letting the perturbed parameter ε tend to zero. In addition, the interaction of the delta standing wave and the contact vacuum state is considered which appear in the Riemann solutions.

Related Topics
Physical Sciences and Engineering Mathematics Analysis
Authors
,