Article ID Journal Published Year Pages File Type
6419461 Journal of Mathematical Analysis and Applications 2011 13 Pages PDF
Abstract

We derive twenty five basic identities of symmetry in three variables related to higher-order Euler polynomials and alternating power sums. This demonstrates that there are abundant identities of symmetry in three-variable case, in contrast to two-variable case, where there are only a few. These are all new, since there have been results only about identities of symmetry in two variables. The derivations of identities are based on the p-adic integral expression of the generating function for the higher-order Euler polynomials and the quotient of integrals that can be expressed as the exponential generating function for the alternating power sums.

Related Topics
Physical Sciences and Engineering Mathematics Analysis
Authors
, , , ,