Article ID Journal Published Year Pages File Type
6419636 Journal of Mathematical Analysis and Applications 2011 15 Pages PDF
Abstract

We study in this article the improved Sobolev inequalities with Muckenhoupt weights within the framework of stratified Lie groups. This family of inequalities estimate the Lq norm of a function by the geometric mean of two norms corresponding to Sobolev spaces W˙s,p and Besov spaces B˙∞−β,∞. When the value p which characterizes Sobolev space is strictly larger than 1, the required result is well known in Rn and is classically obtained by a Littlewood-Paley dyadic blocks manipulation. For these inequalities we will develop here another totally different technique. When p=1, these two techniques are not available anymore and following M. Ledoux (2003) [12], in Rn, we will treat here the critical case p=1 for general stratified Lie groups in a weighted functional space setting. Finally, we will go a step further with a new generalization of improved Sobolev inequalities using weak-type Sobolev spaces.

Related Topics
Physical Sciences and Engineering Mathematics Analysis
Authors
,