Article ID Journal Published Year Pages File Type
6419869 Applied Mathematics and Computation 2016 21 Pages PDF
Abstract

•An SDE SIS epidemic model with demographic stochasticity is developed.•Existence of a unique non-negative solution is shown.•An upper bound is found for the infectives in terms of the population size.•The infectives and susceptibles go extinct in finite time a.s.•Results are supported numerically, some with real examples.

In this paper we look at the two dimensional stochastic differential equation (SDE) susceptible-infected-susceptible (SIS) epidemic model with demographic stochasticity where births and deaths are regarded as stochastic processes with per capita disease contact rate depending on the population size. First we look at the SDE model for the total population size and show that there exists a unique non-negative solution. Then we look at the two dimensional SDE SIS model and show that there exists a unique non-negative solution which is bounded above given the total population size. Furthermore we show that the number of infecteds and the number of susceptibles become extinct in finite time almost surely. Lastly, we support our analytical results with numerical simulations using theoretical and realistic disease parameter values.

Related Topics
Physical Sciences and Engineering Mathematics Applied Mathematics
Authors
, , ,