Article ID Journal Published Year Pages File Type
6419960 Applied Mathematics and Computation 2016 11 Pages PDF
Abstract

A pattern of interpolation nodes on the disk is studied, for which the interpolation problem is theoretically unisolvent, and which renders a minimal numerical condition for the collocation matrix when the standard basis of Zernike polynomials is used. It is shown that these nodes have an excellent performance also from several alternative points of view, providing a numerically stable surface reconstruction, starting from both the elevation and the slope data. Sampling at these nodes allows for a more precise recovery of the coefficients in the Zernike expansion of a wavefront or of an optical surface.

Related Topics
Physical Sciences and Engineering Mathematics Applied Mathematics
Authors
, , , ,