Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
6420065 | Applied Mathematics and Computation | 2016 | 6 Pages |
A principal step in designing dividing hydraulic structures entails determining the side weir discharge coefficient. In this study, Firefly optimization-based Support Vector Regression (SVR-FF) is introduced and examined in terms of predicting the discharge coefficient of a modified labyrinth side weir. Ten non-dimensional parameters of various geometrical and hydraulic conditions are defined as the input parameters for the SVR-FF and the side weir discharge coefficient is defined as the output. Improvements in SVR prediction accuracy are determined by comparing SVR-FF with the traditional SVR model. The results indicate that the SVR-FF model with RMSE of 0.035 is about 10% more accurate than SVR with RMSE of 0.039. Thus, combining the Firefly optimization algorithm with SVR increases the prediction model performance.