Article ID Journal Published Year Pages File Type
6420375 Applied Mathematics and Computation 2015 13 Pages PDF
Abstract

In this paper we are presenting our PermonCube and FLLOP packages, and their use for massively parallel solution of elastoplasticity problems. PermonCube provides simple cubical meshes, partitioned in a non-overlapping manner. By means of finite element method it assembles all linear algebra objects required for solution of the physical problem. Two chosen nonlinear material models are presented, and a solving strategy based on the Newton's method is briefly discussed. PermonCube uses our FLLOP library as a linear system solver. FLLOP is able to solve problems decomposed in a non-overlapping manner using domain decomposition methods of the FETI type. It extends PETSc (Portable, Extensible Toolkit for Scientific Computation). In the last section, large-scale numerical experiments with problem size up to 60 million of degrees of freedom are presented.

Keywords
Related Topics
Physical Sciences and Engineering Mathematics Applied Mathematics
Authors
, , , ,