Article ID Journal Published Year Pages File Type
6422015 Applied Mathematics and Computation 2012 10 Pages PDF
Abstract

The investigation of interacting population models has long been and will continue to be one of the dominant subjects in mathematical ecology; moreover, the persistence and extinction of these models is one of the most interesting and important topics, because it provides insight into their behavior. The mean extinction-time depends on the initial population size and satisfies the backward Kolmogorov differential equation, a linear second-order partial differential equation with variable coefficients; hence, finding analytical solutions poses severe problems, except in a few simple cases, so we can only compute numerical approximations (an idea already mentioned in Sharp and Allen (1998) [1]).In this paper, we study a stochastic Lotka-Volterra model (Allen, 2007) [2, p. 149]; we prove the nonnegative character of its solutions for the corresponding backward Kolmogorov differential equation; we propose a finite element method, whose Matlab code is offered in the Appendix; and, finally, we make a direct comparison between predictions and numerical simulations of stochastic differential equations (SDEs).

Related Topics
Physical Sciences and Engineering Mathematics Applied Mathematics
Authors
, ,