Article ID Journal Published Year Pages File Type
6422120 Applied Mathematics and Computation 2011 13 Pages PDF
Abstract

We present a new finite difference method for solving Poisson's equation with the Dirichlet boundary condition on a more general type of discretization for given domain, based on the local boundary element method. The method uses the piecewise linear approximation and produce a sparse linear system despite the use of boundary elements. The discrete maximum principal is established without any angle condition for the discrete cells of the discretization. The convergence behavior is comparable to that of standard finite difference methods on rectangle grids, and equally super-convergence property is attained on more general meshes when the solution u is in the function class C2,α(Ω¯)∪C3(Ω¯),0<α<1. Also, if u∈C3,1(Ω¯), the standard O(h2) convergence is obtained. Numerical tests are given, which illustrate our results.

Related Topics
Physical Sciences and Engineering Mathematics Applied Mathematics
Authors
, , ,