Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
6422172 | Applied Mathematics and Computation | 2011 | 8 Pages |
Abstract
The purpose of this article is to prove the strong convergence theorems for hemi-relatively nonexpansive mappings in Banach spaces. In order to get the strong convergence theorems for hemi-relatively nonexpansive mappings, a new monotone hybrid iteration algorithm is presented and is used to approximate the fixed point of hemi-relatively nonexpansive mappings. Noting that, the general hybrid iteration algorithm can be used for relatively nonexpansive mappings but it can not be used for hemi-relatively nonexpansive mappings. However, this new monotone hybrid algorithm can be used for hemi-relatively nonexpansive mappings. In addition, a new method of proof has been used in this article. That is, by using this new monotone hybrid algorithm, we firstly claim that, the iterative sequence is a Cauchy sequence. The results of this paper modify and improve the results of Matsushita and Takahashi, and some others.
Related Topics
Physical Sciences and Engineering
Mathematics
Applied Mathematics
Authors
Yongfu Su, Mengqin Li, Hong Zhang,