Article ID Journal Published Year Pages File Type
6422261 Applied Mathematics and Computation 2011 8 Pages PDF
Abstract

Numerous optimization methods have been proposed for the solution of the unconstrained optimization problems, such as mathematical programming methods, stochastic global optimization approaches, and metaheuristics. In this paper, a metaheuristic algorithm called Modified Shuffled Complex Evolution (MSCE) is proposed, where an adaptation of the Downhill Simplex search strategy combined with the differential evolution method is proposed. The efficiency of the new method is analyzed in terms of the mean performance and computational time, in comparison with the genetic algorithm using floating-point representation (GAF) and the classical shuffled complex evolution (SCE-UA) algorithm using six benchmark optimization functions. Simulation results and the comparisons with SCE-UA and GAF indicate that the MSCE improves the search performance on the five benchmark functions of six tested functions.

Related Topics
Physical Sciences and Engineering Mathematics Applied Mathematics
Authors
, , , ,