Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
6422489 | Journal of Computational and Applied Mathematics | 2015 | 14 Pages |
Abstract
We propose and analyze a linear stabilization of the Crank-Nicolson Leapfrog (CNLF) method that removes all time step/CFL conditions for stability and controls the unstable mode. It also increases the SPD part of the linear system to be solved at each time step while increasing solution accuracy. We give a proof of unconditional stability of the method as well as a proof of unconditional, asymptotic stability of both the stable and unstable modes. We illustrate two applications of the method: uncoupling groundwater-surface water flows and Stokes flow plus a Coriolis term.
Keywords
Related Topics
Physical Sciences and Engineering
Mathematics
Applied Mathematics
Authors
Nan Jiang, Michaela Kubacki, William Layton, Marina Moraiti, Hoang Tran,