Article ID Journal Published Year Pages File Type
6423162 Journal of Computational and Applied Mathematics 2012 14 Pages PDF
Abstract

Obtaining high resolution images of space objects from ground based telescopes involves using a combination of sophisticated hardware and computational post-processing techniques. An important, and often highly effective, computational post processing tool is multiframe blind deconvolution (MFBD). Mathematically, MFBD is modeled as a nonlinear inverse problem that can be solved using a flexible, variable projection optimization approach. In this paper we consider MFBD problems that are parameterized by a large number of variables. The formulas required for efficient implementation are carefully derived using the spectral decomposition and by exploiting properties of conjugate symmetric vectors. In addition, a new approach is proposed to provide a mathematical decoupling of the optimization problem, leading to a block structure of the Jacobian matrix. An application in astronomical imaging is considered, and numerical experiments illustrate the effectiveness of our approach.

Related Topics
Physical Sciences and Engineering Mathematics Applied Mathematics
Authors
, ,