Article ID Journal Published Year Pages File Type
6423167 Journal of Computational and Applied Mathematics 2012 12 Pages PDF
Abstract

We present a MATLAB package with implementations of several algebraic iterative reconstruction methods for discretizations of inverse problems. These so-called row action methods rely on semi-convergence for achieving the necessary regularization of the problem. Two classes of methods are implemented: Algebraic Reconstruction Techniques (ART) and Simultaneous Iterative Reconstruction Techniques (SIRT). In addition we provide a few simplified test problems from medical and seismic tomography. For each iterative method, a number of strategies are available for choosing the relaxation parameter and the stopping rule. The relaxation parameter can be fixed, or chosen adaptively in each iteration; in the former case we provide a new “training” algorithm that finds the optimal parameter for a given test problem. The stopping rules provided are the discrepancy principle, the monotone error rule, and the NCP criterion; for the first two methods “training” can be used to find the optimal discrepancy parameter.

Related Topics
Physical Sciences and Engineering Mathematics Applied Mathematics
Authors
, ,