Article ID Journal Published Year Pages File Type
6423190 Applied Numerical Mathematics 2016 17 Pages PDF
Abstract

We consider numerical approximation of the Riesz Fractional Differential Equations (FDEs), and construct a new set of generalized Jacobi functions, Jn−α,−α(x), which are tailored to the Riesz fractional PDEs. We develop optimal approximation results in non-uniformly weighted Sobolev spaces, and construct spectral Petrov-Galerkin algorithms to solve the Riesz FDEs with two kinds of boundary conditions (BCs): (i) homogeneous Dirichlet boundary conditions, and (ii) Integral BCs. We provide rigorous error analysis for our spectral Petrov-Galerkin methods, which show that the errors decay exponentially fast as long as the data (right-hand side function) is smooth, despite that fact that the solution has singularities at the endpoints. We also present some numerical results to validate our error analysis.

Related Topics
Physical Sciences and Engineering Mathematics Computational Mathematics
Authors
, , ,