Article ID Journal Published Year Pages File Type
6423221 Applied Numerical Mathematics 2014 13 Pages PDF
Abstract

We extend the a priori error analysis of Trefftz discontinuous Galerkin methods for time-harmonic wave propagation problems developed in previous papers to acoustic scattering problems and locally refined meshes. To this aim, we prove refined regularity and stability results with explicit dependence of the stability constant on the wave number for non-convex domains with non-connected boundaries. Moreover, we devise a new choice of numerical flux parameters for which we can prove L2-error estimates in the case of locally refined meshes near the scatterer. This is the setting needed to develop a complete hp-convergence analysis.

Related Topics
Physical Sciences and Engineering Mathematics Computational Mathematics
Authors
, , ,