Article ID Journal Published Year Pages File Type
6423383 Discrete Mathematics 2014 10 Pages PDF
Abstract

The finite Figueroa planes are non-Desarguesian projective planes of order q3 for all prime powers q>2, constructed algebraically in 1982 by Figueroa, and Hering and Schaeffer, and synthetically in 1986 by Grundhöfer. All Figueroa planes of finite square order are shown to possess a unitary polarity by de Resmini and Hamilton in 1998, and hence admit unitals. Hui and Wong (2012) have shown that these polar unitals do not satisfy a necessary condition, introduced by Wilbrink in 1983, for a unital to be classical, and hence they are not classical. In this article we introduce and make use of a new alternative synthetic description of the Figueroa plane and unital to demonstrate the existence of O'Nan configurations, thus providing support to Piper's conjecture (1981).

Related Topics
Physical Sciences and Engineering Mathematics Discrete Mathematics and Combinatorics
Authors
, ,