Article ID Journal Published Year Pages File Type
6423498 Discrete Mathematics 2011 6 Pages PDF
Abstract

Huber (1956) [8] considered the following problem on the hyperbolic plane H. Consider a strictly hyperbolic subgroup of automorphisms on H with compact quotient, and choose a conjugacy class in this group. Count the number of vertices inside an increasing ball, which are images of a fixed point x∈H under automorphisms in the chosen conjugacy class, and describe the asymptotic behaviour of this number as the size of the ball goes to infinity. We use a well-known analogy between the hyperbolic plane and the regular tree to solve this problem on the regular tree.

Related Topics
Physical Sciences and Engineering Mathematics Discrete Mathematics and Combinatorics
Authors
,