Article ID Journal Published Year Pages File Type
6423556 Discrete Mathematics 2011 9 Pages PDF
Abstract

A graph is called supermagic if it admits a labelling of the edges by pairwise different consecutive positive integers such that the sum of the labels of the edges incident with a vertex is independent of the particular vertex. A graph G is called conservative if it admits an orientation and a labelling of the edges by integers {1,…,|E(G)|} such that at each vertex the sum of the labels on the incoming edges is equal to the sum of the labels on the outgoing edges. In this paper we deal with conservative graphs and their connection with the supermagic graphs. We introduce a new method to construct supermagic graphs using conservative graphs. Inter alia we show that the union of some circulant graphs and regular complete multipartite graphs are supermagic.

Related Topics
Physical Sciences and Engineering Mathematics Discrete Mathematics and Combinatorics
Authors
, ,