| Article ID | Journal | Published Year | Pages | File Type |
|---|---|---|---|---|
| 6423794 | Electronic Notes in Discrete Mathematics | 2011 | 6 Pages |
Baker and Norine developed a graph theoretic analogue of the classical Riemann-Roch theorem. Amini and Manjunath extended their criteria to all full-dimensional lattices orthogonal to the all ones vector. We show that Amini and Manjunathʼs criteria holds for all full-dimensional lattices orthogonal to some positive vector and study some combinatorial examples of such lattices. Two distinct generalizations of the chip-firing game of Baker and Norine to directed graphs are provided. We describe how the “row” chip-firing game is related to the sandpile model and the “column” chip-firing game is related to directed G-parking functions. We finish with a discussion of arithmetical graphs, introduced by Lorenzini, viewing them as a class of vertex weighted graphs whose Laplacian is orthogonal to a positive vector and describe how they may be viewed as a special class of unweighted strongly connected directed graphs.
