Article ID Journal Published Year Pages File Type
6423967 Electronic Notes in Discrete Mathematics 2011 6 Pages PDF
Abstract

A pebbling move on a graph removes two pebbles at a vertex and adds one pebble at an adjacent vertex. Rubbling is a version of pebbling where an additional move is allowed. In this new move, one pebble each is removed at vertices v and w adjacent to a vertex u, and an extra pebble is added at vertex u. A vertex is reachable from a pebble distribution if it is possible to move a pebble to that vertex using rubbling moves. The rubbling number is the smallest number m needed to guarantee that any vertex is reachable from any pebble distribution of m pebbles. The optimal rubbling number is the smallest number m needed to guarantee a pebble distribution of m pebbles from which any vertex is reachable. We give bounds for rubbling and optimal rubbling numbers.

Keywords
Related Topics
Physical Sciences and Engineering Mathematics Discrete Mathematics and Combinatorics
Authors
, ,