Article ID Journal Published Year Pages File Type
6424419 European Journal of Combinatorics 2011 15 Pages PDF
Abstract

We study the interplay between the principal pivot transform (pivot) and loop complementation for graphs. This is done by generalizing loop complementation (in addition to pivot) to set systems. We show that the operations together, when restricted to single vertices, form the permutation group S3. This leads, e.g., to a normal form for sequences of pivots and loop complementation on graphs. The results have consequences for the operations of local complementation and edge complementation on simple graphs: an alternative proof of a classic result involving local and edge complementation is obtained, and the effect of sequences of local complementations on simple graphs is characterized.

Related Topics
Physical Sciences and Engineering Mathematics Discrete Mathematics and Combinatorics
Authors
, ,