Article ID Journal Published Year Pages File Type
6424424 European Journal of Combinatorics 2011 10 Pages PDF
Abstract

We characterize the hyperplanes of the dual polar space DW(2n−1,q) which arise from projective embeddings as those hyperplanes H of DW(2n−1,q) which satisfy the following property: if Q is an ovoidal quad, then Q∩H is a classical ovoid of Q. A consequence of this is that all hyperplanes of the dual polar spaces DW(2n−1,4), DW(2n−1,16) and DW(2n−1,p) (p prime) arise from projective embeddings.

Related Topics
Physical Sciences and Engineering Mathematics Discrete Mathematics and Combinatorics
Authors
,