Article ID Journal Published Year Pages File Type
6424824 Annals of Pure and Applied Logic 2012 13 Pages PDF
Abstract

In his recent work, Woodin has defined new axioms stronger than I0 (the existence of an elementary embedding j from L(Vλ+1) to itself), that involve elementary embeddings between slightly larger models. There is a natural correspondence between I0 and Determinacy, but to extend this correspondence in the new framework we must insist that these elementary embeddings are proper. Previous results validated the definition, showing that there exist elementary embeddings that are not proper, but it was still open whether properness was determined by the structure of the underlying model or not. This paper proves that this is not the case, defining a model that generates both proper and non-proper elementary embeddings, and compare this new model to the older ones.

Related Topics
Physical Sciences and Engineering Mathematics Logic
Authors
,